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Abstract This paper concerns steady flow and solute uptake in a wavy-walled channel, where the wavelength and
amplitude of the wall are comparable to each other but are much shorter than the width of the channel. The problem
has two primary asymptotic regions: a core region where the walls appear flat at leading order and a wall region
where there is full interaction between advection, diffusion and uptake at the wavy wall. For weak wall uptake,
the effective uptake from the core is shown to increase with wall waviness in proportion to surface area, whereas
for stronger wall uptake, it is found that the uptake from the core can be reduced as the wall amplitude increases.
Conditions are identified under which this approximation is uniformly valid in a full channel flow, accounting for
inlet conditions, and a comprehensive survey of the asymptotic distributions of solute both along and across the
channel is provided. It is also shown how this multiscale approach can readily be extended to account for channel
walls with multiple lengthscales of spatial variation.
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1 Introduction

In this paper we study flow and solute uptake in a channel with wavy walls, where the amplitude and wavelength of
the walls are comparable to each other but small compared to the channel width. This situation occurs in biological
systems, for example the small intestine (where the wall is covered with small projections called villi) and blood
vessels (where nuclei of endothelial cells intrude into the lumen). Similar flows can also be found in widespread
physical systems with surface roughness. By examining flow and transport at the micro-scale (that of the surface
roughness), we derive effective boundary conditions for flow and transport at the macro-scale (that of the channel).

There are a large number of prior studies on flow over rough or wavy surfaces, both analytical and experimental.
Many have focused on the role of wall roughness in the context of the no-slip boundary condition, an issue of
increasing interest in microfluidic applications [1]; the roughness induces in its far field a shift in the velocity profile
by a distance equivalent to an effective slip length, which depends on the size and shape of the roughness. For a
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26 H. F. Woollard et al.

review of experimental work in this area see [2]. There have been numerous theoretical approaches to this problem
using a variety of methods, with early studies motivated by the problem of defining an effective boundary condition
at the edge of a porous medium [3–5]. In particular, Hocking [6] computed the 2D viscous shear flow over a wavy
surface, finding an amplitude-dependent slip for small-amplitude roughness (using a series solution method) and
a limiting slip for effectively infinite-amplitude roughness (using a Weiner–Hopf technique). Hocking’s work has
subsequently been extended to account for inertial effects [7,8], non-sinusoidal roughness [9–11], surface coatings
[12], randomly distributed protuberances [13] or random surface corrugations [14] and grooves oriented relative to
the flow [15,16]. At zero Reynolds number, the streamlines in sufficiently deep grooves exhibit flow reversal [17],
a feature which is enhanced by inertia [18,19]. Stokes flows over wavy surfaces have been addressed with a variety
of theoretical approaches, including boundary-integral methods [20,21], conformal-mapping techniques [22] and
asymptotic homogenisation approaches [23,24].

Transport over rough surfaces by diffusion alone has been investigated in the context of fractal surfaces, where
uptake at the wall has been shown to be dominated by the large-scale shape of the wall, being less sensitive to
the small-scale structures [25,26]. Likewise, Fyrillas and Pozrikidis [27] showed that diffusive transport across an
irregular surface does not scale with surface area, but asymptotes as the amplitude of the irregularities increases.
Below we revisit these multi-scale issues, accounting for the presence of flow. The optimisation of surfaces for
engineering heat-transfer applications [28] raises interesting analogous questions in biological contexts such as the
gut (where villi are covered with yet finer corrugations called microvilli), where numerous additional constraints
must be observed. Transport over irregular surfaces by flow alone can exhibit mixing by chaotic advection [29,30],
when the Hamiltonian structure of 2D Stokes flow is perturbed. Transport by Stokes drift over wavy surfaces has
also been described [31].

There is in addition a substantial literature on high-Reynolds-number heat and mass transfer in corrugated chan-
nels and pipes [32–34], which we do not attempt to summarise here. However, certain features are relevant to our
study, for example increased uptake at the peaks of corrugations [35] and saturation and possible decrease of uptake
with increased waviness [36].

The present study seeks to fill an important gap in the existing literature, describing transport by Stokes flow
in a wavy-walled channel in the presence of diffusion, allowing for uptake of solute at the wall. While effective
slip conditions for the flow are well characterised, equivalent conditions for uptake of a solute are not. Rather
than follow a formal homogenisation approach [37], we exploit matched asymptotic expansions in the limit in
which the wall wavelength and amplitude are both small compared to the channel width. The model is outlined
in Sect. 2; flow results are reviewed in Sect. 3 and the derivation of the effective uptake parameter is described in
Sect. 4. In treating the inner problem at the wall computationally, instead of mapping the wavy domain to a plane
surface [38], we compute the flow and transport directly with a finite-element method. In addition to a primary
inner layer along the wavy wall matching an outer layer in the core of the channel (for formal convergence of
related problems see [39]), we identify a range of other asymptotic regions within and along the channel whose
dimensions are functions of the effective uptake parameter and Péclet number (Sect. 5). By deriving an effective
uptake parameter, and identifying the global conditions under which it is appropriate, we show how (and when)
to approximate flows in walls with multiple lengthscales of waviness. We illustrate the utility of the approach in
Sect. 6 by considering flow in a channel which has two levels of waviness at its wall.

2 Mathematical model

We consider a long, planar, wavy-walled channel of mean width 2(a∗ + ελ∗), symmetric about its midline Y ∗ = a∗
(∗ denotes a dimensional quantity). The channel walls have wavelength 2πλ∗ and amplitude ελ∗, where λ∗ � a∗,
ε = O(1) and the lower wall lies at

Y ∗ = ελ∗ (
cos

(
X∗/λ∗) − 1

) ≡ a∗F
(
X∗/a∗; λ∗/a∗, ε

)
, (2.1)
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A multi-scale model for solute transport 27

where X∗ measures distance down the channel. A viscous fluid flows through the channel transporting a solute
which is absorbed through the walls via a mixed boundary condition. At the inlet the flow has a Poiseuille profile
and provides a steady influx of solute. The steady Stokes flow down the channel satisfies

∇∗ P∗ = η∗∇∗2U∗, ∇∗ · U∗ = 0,
(
a∗F ≤ Y ∗ ≤ a∗, X∗ > 0

)
, (2.2)

subject to boundary conditions

U∗ = 0 on Y ∗ = a∗F, U∗
Y ∗ = 0,V ∗ = 0 on Y ∗ = a∗, (2.3a)

U∗ = U∗
0

(
Y ∗ (

2a∗ − Y ∗) /a∗2, 0
)

on X∗ = 0. (2.3b)

Here U∗
0 is the maximum axial velocity down the channel and η∗ is the viscosity of the fluid. Solute transport is

governed by the steady advection–diffusion equation
(
U∗ · ∇∗) C∗ = D∗∇2C∗ for a∗F ≤ Y ∗ ≤ a∗, X∗ > 0, (2.4)

subject to boundary conditions
(
n · ∇∗) C∗ = −µ∗C∗ on Y ∗ = a∗F, C∗

Y ∗ = 0 on Y ∗ = a∗, (2.5a)

C∗ = C∗
0 on X∗ = 0, (2.5b)

where D∗ is the solute diffusivity, C∗
0 is the uniform solute concentration at the inlet of the channel, n is the unit

outward normal on Y ∗ = a∗F and µ∗ > 0 is an uptake parameter (so that D∗µ∗ is the mass-transfer coefficient
across the wall). We assume that the channel is long enough for the concentration to tend to zero far downstream.

We non-dimensionalise the problem using

U∗ = 2U∗
0 U, C∗ = C∗

0 C, (2.6a)

P∗ = (2η∗U∗
0 /a∗)P, Y ∗ = a∗Y, X∗ = a∗ X, (2.6b)

which gives a unit dimensionless shear rate near the wall. Equations (2.2–2.5) become

∇ P = ∇2U, ∇ · U = 0 for F ≡ ελ (cos (X/λ) − 1) ≤ Y ≤ 1, X > 0, (2.7a)

U = 0 on Y = F, UY = 0,V = 0 on Y = 1, (2.7b)

U = (
Y

(
1 − 1

2 Y
)
, 0

)
on X = 0, (2.7c)

and

Pe (U · ∇) C = ∇2C for F ≤ Y ≤ 1, X > 0, (2.8a)

(n · ∇) C = −µC on Y = F, CY = 0 on Y = 1, (2.8b)

C = 1 on X = 0. (2.8c)

The problem is governed by the geometric parameters ε and λ = λ∗/a∗, the Péclet number Pe = 2U∗
0 a∗/D∗ and

uptake parameter µ = a∗µ∗.
Figure 1 shows the solution domain. We initially solve this problem asymptotically in the limit λ → 0, with ε,

Pe and µ formally of O(1). Below we also consider the limits ε → 0 (with a flat wall, Sect. 5) and µ = O(1/λ)

(with strong uptake over a wavy wall, Sect. 4.2). The asymptotic solution has two primary regions: a core region in
λ � Y ≤ 1 and a wall region where Y = O(λ), as shown in Fig. 1. As λ → 0 the wall appears flat at leading order
in the core region. Our aim is to determine the leading-order effective dimensionless uptake parameter µeff in the
core problem, defined by

(n · ∇) C = −µeffC as Y → 0, (2.9)

as a function of ε and Pe as λ → 0. We now reformulate the problem in each region.
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Fig. 1 The solution domain
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2.1 Core problem: λ � Y ≤ 1

Due to the no-slip condition in (2.7b), we expect the flow to approach a shear flow of the form

U = (U, V ) ∼ (Y + λβ, 0)T as Y → 0, (2.10)

where β = O(1) is a dimensionless slip length to be determined. The leading-order solution of (2.7) in the core
region is

U = (
Y

(
1 − 1

2 Y
)
, 0

)
, P = P0 − 1

2 X, (2.11)

for some constant P0.
We expand the solute concentration in powers of Y for λ � Y ≤ 1 near the wall in terms of unknown coefficients,

Ci j (X). Equations (2.8) in the core problem then become

Pe (U · ∇) C = ∇2C for 0 < Y ≤ 1, (2.12a)

C ∼ C00(X) + C01(X)Y + λ [C10(X) + C11(X)Y ] + O(λ2, Y 2) as Y → 0, (2.12b)

CY = 0 on Y = 1, (2.12c)

C = 1 on X = 0, C → 0 as X → ∞. (2.12d)

The dependence of the coefficients Ci j on X is addressed in Sect. 5 below, where we consider the solute transport
problem in the core in detail. The dependence on µ is considered below.

2.2 Wall problem

We examine the wall problem near an arbitrary point X = X0, Y = 0 (where X0/2πλ is an integer) using the
scalings

Y = λ (y − ε) , X = X0 + λx, U = λu, V = λv, (2.13)

with x , y, u and v of O(1) as λ → 0. Since the fully developed flow in the core (2.11) is independent of x , we assume
2π -periodicity of u in the wall region. The pressure in the core region will vary by O(λ) over one wavelength,
allowing us to apply 2π -periodicity to the leading-order pressure field in the wall region. This leaves the local flow
problem as

∇W P = ∇2
W u, ∇W · u = 0 for y ≥ ε cos x, (2.14a)

u = 0 on y = ε cos x, u ∼ (y, 0) + O(1) for 1 � y � 1/λ, (2.14b)

u (x, y) = u (x + 2π, y) , P (x, y) = P (x + 2π, y), (2.14c)

where ∇W ≡ (∂/∂x, ∂/∂y).
The matching condition on the solute field, (2.12b), becomes

C ∼ C00(X) + λ [C01(X)(y − ε) + C10(X)] + O(λ2), (2.15)
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A multi-scale model for solute transport 29

for 1 � y � 1/λ. Although C varies along the channel, we again assume that this variation is small across one
wavelength; this assumption is revisited in Sect. 5 below. This allows us to impose 2π -periodicity of C in the wall
problem, treating the coefficients Ci j as constants Ci j (X0) in (2.15). Writing C(X0+λx, λy) = C00(X0)+λć(x, y)

and setting Pe = λ2Pe, this leaves the wall solute transport problem as

Pe (u · ∇W ) ć = ∇2
W ć for y ≥ ε cos x, (2.16a)

(n · ∇W ) ć = −µ(C00 + λć) on y = ε cos x, (2.16b)

ć ∼ C01(y − ε) + C10 for 1 � y � 1/λ, (2.16c)

ć (x, y) = ć (x + 2π, y) , (2.16d)

neglecting terms of O(λ2). For Pe and ε both fixed, and considering (2.16b), we can then identify two distinct limits:
Case 1, where µ = O(1) and C00 = O(1) (which we denote as weak uptake); and Case 2, where µ = O(1/λ) and
C00 = 0 (strong uptake). We now have two well-defined problems for flow and solute uptake in the wall region,
which we consider in Sects. 3 and 4, respectively. This will allow us to determine µeff in (2.9) as

µeff = C01

C00
in Case 1 , µeff = C01

λC10
in Case 2. (2.17)

Case 2 also encompasses the limit µ 
 1/λ.

2.3 Methods

For flow and uptake over small-amplitude wavy walls we find asymptotic solutions of (2.14) and (2.16) for ε � 1
by expanding variables in powers of ε and linearising the boundary conditions around y = 0. This simplifies
the governing equations and allows us to construct regular series solutions in ε, in some instances using a simple
Crank–Nicolson finite-difference method to compute coefficients.

For walls of finite-amplitude waviness (ε = O(1)) we use the finite-element solver COMSOL Multiphysics to
solve for the flow and solute transport (CPU time approximately 1min on a desk-top PC). This package discretises
the domain into a finite-element mesh of differently sized triangles which are finer near the wavy wall where vari-
ation is greatest. To validate the solutions we use mesh refinement, comparison with small-amplitude asymptotics
and, for the flow problem, we compare streamlines with Ref. [20] and the predicted slip length with Ref. [6].

3 Flow in the wall region

The flow in the wall region is governed by (2.14). We consider first the flow when ε � 1. We expand u and P as
a regular power series in ε about the leading-order shear flow (y, 0). To find the asymptotic solution to O(ε2) we
Taylor-expand the wall boundary condition around y = 0 and look at each order separately, writing u in terms of
stream functions. A straightforward calculation gives

u =
(

y
0

)
+ ε

(
e−y (y − 1) cos x
−ye−y sin x

)
+ ε2

(
e−y

√
3[− cos y + (

√
3 − 1) sin y] cos 2x − 1

1
2 e−y

√
3[cos y + (

√
3 − 4) sin y] sin 2x

)

+ O(ε3). (3.1)

As y → ∞, (3.1) becomes

u = (y − ε2, 0) + O(ε3). (3.2)

Numerical solutions for finite-amplitude waviness (see Sect. 2.3) are illustrated in Fig. 2. There is no flow reversal
for small ε (Fig. 2a). However, for larger amplitudes, viscous eddies [17] develop in the trough and increase in
number for larger amplitudes (see Figs. 2b–d).
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Fig. 2 Streamlines for the flow for ε = (a) 0.5, (b) 1, (c) 3 and (d) 5
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Fig. 3 (a) Velocity u at x = π for different values of ε. The crests of the wall lie at y = ε in each case. (b) Effective slip β against
amplitude ε compared with asymptotic and Hocking’s (1976) results. The dashed line shows β = β∞

Figure 3(a) shows the horizontal velocity u at x = π for different values of ε. For larger values of ε, the eddies
create an area of low velocity in the troughs which decreases the far-field value of u. Recall that the crests of the
wall lie at y = ε. The far-field value of u can be represented in terms of the core flow as in (2.10). We plot the
slip parameter, β, in Fig. 3b and validate numerical results with (3.2), which predicts β ≈ ε − ε2 for ε � 1 [6]. β

increases rapidly until ε = O(1) and then levels off for larger values of ε. Numerical results agree with Hocking’s
series-solution slip predictions for moderate ε (see circles in Fig. 3(b)) and with his prediction for the case ε → ∞
(β∞ ≈ 0.5569).

4 Transport in the wall region

Having determined the flow, we now examine the solute transport. In Sect. 4.1 we study the case µ = O(1), whilst
in Sect. 4.2 we study the case µ = O(λ−1) which corresponds to stronger uptake. For both cases we discuss
small-amplitude asymptotic solutions, numerical solutions at finite amplitude and then match the results with the
core solution to find an effective uptake condition via (2.17).

4.1 Case 1: weak uptake, µ = O(1)

To leading order in λ with µ = O(1), Pe = O(1) and ε = O(1) we solve (2.16) with the prescribed flux condition
(n · ∇W ) ć = −µC00 on y = ε cos x . To simplify the problem we scale out µ and simplify the far-field boundary
condition by setting c̄ = (

ć + εC01 − C10
)
/µC00, which gives
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A multi-scale model for solute transport 31

Pe (u · ∇W ) c̄ = ∇2
W c̄ for y ≥ ε cos x, (4.1a)

(n · ∇W ) c̄ = −1 on y = ε cos x, (4.1b)

c̄ ∼ (C01/µC00)y for 1 � y � 1/λ, (4.1c)

with c̄ (x, y) = c̄ (x + 2π, y). By applying the divergence theorem to (4.1) we find that the flux in the far-field must
balance that crossing the wall, and hence that (from (2.17)),
C01

µC00
= µeff

µ
= L(ε)

2π
, (4.2)

where L(ε) is the arc-length of the wavy wall over one wavelength.
To solve (4.1) numerically on the finite domain ε cos x ≤ y ≤ y0 with y0 
 1, it is convenient to subtract off

the far-field concentration using c = c̄ − C01
µC00

y0, which gives

Pe (u · ∇W ) c = cxx + cyy for y ≥ ε cos x, (4.3a)

(n · ∇W ) c = −1 on y = ε cos x, c = 0 on y = y0, (4.3b)

c (x, y) = c (x + 2π, y). (4.3c)

Appendix A gives details of the small-amplitude solution of (4.1) up to O(ε2). The dashed line in Fig. 4(a)
shows c − (y − y0) (the perturbation to the leading-order concentration field from Appendix A) at x = π for
ε = 0.1. Near y = 0 we see the effect of the flow, where clockwise recirculation of the solute gradient increases and
then decreases the concentration perturbation as y increases. The numerical solution for c − (y − y0) for ε = 0.1
compares well with the asymptotic solution up to O(ε2). Concentration perturbations are more clearly illustrated
in Fig. 5, which shows concentration contours for different amplitudes and Péclet numbers. Figure 4(b) shows the
corresponding centreline concentrations. In Fig. 5 we see that for Pe = 1 the solute is drawn into the troughs of the
wall by diffusion, whereas for Pe = 100 the top eddy causes the solute to circulate, making c(π, y) non-monotonic
in y (Fig. 4b). The lower eddies, however, are too weak to have an effect on the concentration field.

Figure 4(b) also shows that the concentration at the wall is lower for larger amplitudes, increasing the uptake
and the slope of c in the far-field. Increasing the Péclet number influences the concentration near the wall but not
that in the far-field, consistent with (4.2). Since L(ε) > 2π for all ε > 0, solute uptake is always increased by the
wavy wall when µ = O(1).

To illustrate the flux of solute within a trough we plot fluxlines of the incompressible vector field J = Pecu−∇W c
for varying Péclet numbers (Fig. 6). The fluxlines indicate the mean direction of particle transport, illustrating com-
petition between advection and diffusion via a random walk. For Pe = 0, solute is pulled down through the wavy
wall purely by diffusion. As Pe increases we see the effect of the flow on the flux. Figure 6(b) shows that for Pe = 1,
the top eddy causes the solute to circulate, but most of the solute still diffuses through the wall at the bottom of
the trough. For Pe = 100 (Fig. 6c), the top eddy traps a large quantity of the solute, causing it to re-circulate. The
effect of the second eddy is also evident and for larger values of Pe more closed fluxlines form around this eddy.
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Fig. 4 Case 1: (a) Comparison of asymptotic and numerical predictions of the perturbation to the concentration field c − (y − y0) at
x = π for Pe = 1 and ε = 0.1 (with y0 = 50). (b) c at x = π for varying Pe and ε
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Fig. 5 Case 1: Equally spaced contour plots showing numerical results for c for (Pe, ε) = (a) (1, 3), (b) (1, 5), (c) (100, 3) and (d)
(100, 5)

Fig. 6 Case 1: Fluxlines for ε = 3 and (a) Pe = 0, (b) Pe = 1 and (c) Pe = 100

4.2 Case 2: strong uptake, µ = O(1/λ)

We now take µ̄ ≡ λµ = O(1). This strong-uptake case leads to low concentration near the wavy wall, so that
(2.16b) becomes (n · ∇W ) ć = −µ̄ć on y = ε cos x . To simplify the problem we now define c = (ć/C01) to give

Pe (u · ∇W ) c = ∇2
W c for y ≥ ε cos x, (4.4a)

(n · ∇W ) c = −µ̄c on y = ε cos x,

c ∼ y + ((C10/C01) − ε) for 1 � y � 1/λ, (4.4b)

with c (x, y) = c (x + 2π, y). In this case µeff = C01/λC10 must be determined as part of the solution.
To find a numerical solution we again consider the finite domain ε cos x ≤ y ≤ y0, replacing the far-field

condition in (4.4) with

cy = 1 on y = y0, (4.5)

and seeking C01/λC10 as a function of µ̄, ε and Pe.
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Fig. 7 Case 2: Equally spaced contour plots showing numerical results for c for (µ̄, Pe, ε) = (a) (1, 1, 3), (b) (1, 1, 5), (c) (1, 100, 3),
(d) (1, 100, 5), (e) (0.1, 1, 3), (f) (0.1, 1, 5), (g) (0.1, 100, 3) and (h) (0.1, 100, 5)

As with Case 1 we first look at the small-amplitude asymptotic solution up to O(ε2) (for details see
Appendix B). For ε � 1 we validate the numerical solutions with the asymptotic solution to find good agree-
ment (data not shown). We find that in the far-field (for y > 5) the waviness has little effect as the concentration
perturbation flattens to just below zero.

Figure 7(a-d) shows contours of constant concentration for ε = O(1), µ̄ = 1 and for various Péclet numbers.
For larger amplitudes there is less solute uptake at the bottom of the troughs (where c levels out to zero; see Fig. 8a)
as the majority of the solute is absorbed at the peaks. This means that only a small proportion of the surface area is
being used for absorption despite the larger surface area. For large Péclet numbers (Fig. 7c, d) the top eddy causes
the solute to circulate, promoting transport into the trough (the concentration at x = π decreases as both the Péclet
number increases and as the amplitude increases; see Fig. 8). For small µ (Figs. 7e–h, 8b) the solute penetrates
further into the trough, as it does in Case 1, since the overall uptake is weaker. For this case we see that the effect
of Pe and ε is slightly more pronounced, with an increase in either of these variables decreasing the concentration
in the trough.

The effective boundary condition (2.17) can be written µeff ≡ 1/λA, where A ≡ C10/C01 and c ∼ y +
(A − ε) as y → ∞, from (4.4). For ε = 0, A = 1/µ̄ (for details see Appendix B). Figure 9 shows how A(ε, Pe, µ̄)

varies with µ̄ and ε for fixed Pe. For larger values of µ̄, A increases (and µeff decreases) with ε. As seen in
Fig. 7, the strong uptake pulls most of the solute into the peaks, with little solute entering the troughs, so the surface
area for absorption is effectively smaller than in the flat wall case. For smaller values of µ̄, A decreases (and µeff

increases) with ε, increasing uptake as the amplitude increases. This is because the uptake has dropped to a level
where solute can penetrate the trough and so be absorbed by more of the wall, as seen also in Case 1. Figure 10(a)
shows how the effective uptake parameters for Cases 1 and 2 compare well for small µ̄.
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Fig. 10 (a) Comparison of uptake for Case 2 (1/λµeff = A) and Case 1 (1/λµeff = 2π/µ̄L) with Pe = 1. (b) Change in A versus ε

as µ̄ → ∞ with varying Pe

For µ̄ 
 1 and ε = 0, A = 1/µ̄ → 0. For ε > 0, Fig. 10(b) shows A tending to a function independent of µ̄ as
µ̄ → ∞, which we write as A∞(ε, Pe). A∞ is computed by replacing the uptake condition in (4.4b) with c = 0 on
y = ε cos x . A∞ increases monotonically with ε and falls with Pe, as enhanced mixing increases uptake. Figure 11
also shows that for sufficiently large Pe, A decreases (and µeff increases) for larger values of ε, i.e. mixing by the
flow helps carry material deep into the trough. For small ε, however, A is relatively insensitive to Pe.
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Fig. 11 A versus ε for
µ̄ = 1 and varying Pe
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Figure 12(a–c) shows fluxlines for Pe = 0 and for varying µ̄: as for Case 1, diffusion pulls the solute straight
down through the wall, but for larger values of µ̄ more solute diffuses through the peaks of the wavy wall, with little
reaching the bottom of the trough. Figure 12(d–f) shows the fluxlines for Pe = 1. The flow distorts the fluxlines
but does not cause trapping of material. We can see the effect of varying µ̄ in the amount of solute absorbed in each
wave of the wall. The ‘×’s on the graphs show the flux line that is absorbed at the opposite peak. For larger values
of µ̄ this flux line is higher, implying that more solute is absorbed across the cell for larger values of µ̄. For large
Péclet numbers (Fig. 12g–i) the flow causes recirculation of the solute around the top eddy, which allows solute to
be pulled further into the trough. For larger values of Pe we also see weak recirculation around the second eddy.

A schematic of the fluxlines for large Pe is shown in Fig. 12(j). Solute starting far above the trough is carried by
the flow to a downstream cell. All solute that enters the trough is ultimately carried to the wall, although that passing
close to the saddle point S may take a long time to do so. The eddy causes trapping of the solute in the troughs, within
the homoclinic fluxline through S (recalling of course that fluxlines should be interpreted as providing information
about means of distributions of particles undergoing biased random walks).

5 The core problem over long lengthscales

We have seen how, for µ � 1/λ, the effect of the wall waviness on uptake is to increase µeff by increasing the
surface area available for absorption, with the flow in the wall region having little effect ((4.2) and Fig. 10a). For
µ = O(1/λ) or larger, however, we found that increasing wall waviness could reduce µeff (with uptake taking
place mainly at the peaks of the wall), although this effect can be offset by flow-induced mixing in the troughs at
large Pe (Fig. 10b). We now put these results in context by returning to the core problem (Fig. 1) to examine how
the concentration field evolves over distances comparable to, or longer than, the channel width. We also revisit the
assumption of Sect. 2.2 that C varies on a lengthscale much longer than λ.

In the channel the flow is Poiseuille to leading order (see 2.11). We re-express (2.8) and (2.9) as

Pe Y
(
1 − 1

2 Y
)

CX = CX X + CY Y for 0 < Y ≤ 1, (5.1a)

CY = µeffC on Y = 0, CY = 0 on Y = 1, (5.1b)

C = 1 on X = 0, C → 0 as X → ∞. (5.1c)

We calculated numerical solutions of (5.1) for O(1) values of the parameters (µeff, Pe) using COMSOL Multiphys-
ics, testing our results against asymptotic predictions derived below. Results are shown in Figs. 13 and 14. As µeff

is increased, solute uptake occurs nearer the inlet of the channel so that the concentration along the wall falls much
more rapidly than that along the channel centreline (Fig. 15). For large values of Pe and µeff, a distinct boundary
layer at the channel wall is seen (Fig. 14). We now consider the asymptotic structures underlying these results.
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Fig. 12 Case 2: Fluxlines for ε = 3, and (µ̄, Pe) = (a) (0.1, 0), (b) (1, 0), (c) (100, 0), (d) (0.1, 1), (e) (1, 1), (f) (100, 1),
(g) (0.1, 100), (h) (1, 100) , (i) (100, 100), and (j) Phase plane diagram for solute transport

5.1 Asymptotic parameter regimes

We can split the (µeff, Pe)-parameter space into five distinct regimes (I − V ) where asymptotically different solu-
tions can be found; see Fig. 16 (further sub-divisions will be discussed below). These regimes can be characterised
by discussing behaviour in the five distinguished limits that separate them.

5.1.1 The I/II boundary, Pe ∼ µ
1/2
eff � 1

Throughout regimes I and II, rapid transverse diffusion suppresses transverse concentration gradients at leading
order (Figs. 13a–b and 14a–b). To describe this, we scale Pe = µ

1/2
eff �, where � = O(1) on the I/II boundary and
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Fig. 15 Graphs of C at Y = 0 and Y = 1 with µeff = 10 for (a) Pe = 0.1 (regime V ) and (b) Pe = 10 (regime IV)

X = µ
−1/2
eff X̄ . This converts (5.1) to

µeff� Y
(
1 − 1

2 Y
)

CX̄ = µeffCX̄ X̄ + CY Y , (5.2a)

CY = µeffC on Y = 0, CY = 0 on Y = 1, (5.2b)

C = 1 on X̄ = 0, C → 0 as X̄ → ∞. (5.2c)

We expand C = C0(X̄) + µeffC1(X̄ , Y ) + O(µ2
eff), with C0(0) = 1, C0 → 0 as X̄ → ∞, which satisfies (5.2)

at O(1). At O(µeff), (5.2) is

� Y
(
1 − 1

2 Y
)

C0X̄ = C0X̄ X̄ + C1Y Y , (5.3a)

C1Y = C0 on Y = 0, C1Y = 0 on Y = 1, (5.3b)

C1 = 0 on X̄ = 0, C1 → 0 as X̄ → ∞. (5.3c)
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We integrate across the channel width to give 1
3�C0X̄ = C0X̄ X̄ − C0, which is easily solved to give

C0 = exp
[

1
6

(
� − √

�2 + 36
)

X̄
]
, (5.4)

consistent with Fig. 13(a). For � � 1 (regime I ) we obtain at leading order C = exp
[
−µ

1/2
eff X

]
, representing

a dominant balance between axial diffusion and uptake over long lengthscales (as in Fig. 13b). For � 
 1, the
leading-order regime-II solution is (from (5.4))

C = exp
[−3µeff X/Pe

]
, (5.5)

representing a dominant balance between advection and uptake (see [40]). Y -dependent corrections to (5.5) remain
small over long lengthscales provided µeff � 1. Equation (5.5) remains a valid description for Pe 
 1, µeff � 1,
as in Figs. 14(a, b).

5.1.2 The II/III boundary, µeff = O(1), Pe 
 1

Motivated by (5.5), and anticipating that transverse concertration gradients become significant for Pe 
 1, µeff =
O(1) (see Fig. 14), we set X = PeX ′ in (5.1) to give

Y
(
1 − 1

2 Y
)

CX ′ = Pe
−2

CX ′ X ′ + CY Y , (5.6a)

CY = µeffC on Y = 0, CY = 0 on Y = 1, (5.6b)

C = 1 on X ′ = 0, C → 0 as X ′ → ∞. (5.6c)

At leading order we obtain a balance between advection, transverse diffusion and uptake

Y
(
1 − 1

2 Y
)

CX ′ = CY Y , (5.7)

subject to (5.6b) and (5.6c), which can be solved using a Crank–Nicolson finite-difference scheme, time-stepping
in X ′. Solutions are shown in Fig. 17, mirroring the changes seen in Fig. 14(b–d). For small µeff (Fig. 17a), the
concentration field is almost uniform across the channel, consistent with the regime-II description (5.5). Transverse
gradients are stronger for µeff = 1 (Fig. 17b), with rapid axial variation near X ′ = 0; for large µeff (Fig. 17c) there
is rapid uptake of solute at the wall near X ′ = 0.
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To estimate the rate at which concentration falls along the channel, we express C as a sum of separable eigen-
solutions

C =
∞∑

n=1

ane−νn X ′
Fn(Y ), (5.8)

where 0 < ν1 < ν2 < . . ., and the eigenfunctions Fn(Y ) satisfy the orthogonality relation
∫ 1

0
Fn(Y )Fm(Y )Y

(
1 − 1

2 Y
)

dY = δnm . (5.9)

To satisfy the inlet boundary condition, we must also have
∞∑

1

an Fn(Y ) = 1. (5.10)

From (5.7), each eigenmode satisfies

FY Y + νY
(
1 − 1

2 Y
)

F = 0, (5.11a)

FY = µeff F on Y = 0, FY = 0 on Y = 1. (5.11b)

The lowest value of ν, computed numerically, is plotted with a solid line in Fig. 18. For µeff � 1, ν1 ≈ 3µeff,
consistent with (5.5) in regime II. For µeff 
 1 (regime III), ν1 approaches a finite value ν∞ ≈ 5.555, which is
derived from a WKB approximation (see Appendix C) for higher-order eigenvalues (C.15) and which captures well
the lowest-order mode (Fig. 18). The smallest eigenvalue gives only the downstream behaviour in regime III. To
find more about the upstream behaviour we look at higher modes, which reveal evidence of a nested boundary layer
at the entrance of the channel. This we examine in more detail in the next section.

5.1.3 Regions III, IV and V

We provide only a brief overview of regimes III, IV, V (Fig. 16), using Fig. 19 to illustrate our argument. Each
regime is characterised by an outer region for which Y = O(1) and C varies over a length XC , say, and a corner
region near (0, 0) for which Y = O(µ−1

eff ) and C varies over a length XU . The mixed boundary condition applies
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in (and defines) the corner region, so that XU is the length-scale over which C varies along the wall. The boundary
condition C = 0 applies in the outer region, so that XC defines the lengthscale over which C varies along the channel
centreline. Figure 15 (taking data from Figs. 13(d) and 14(d)) shows that XU � XC under suitable conditions.

In regime III (Pe 
 µ2
eff 
 1), XC = Pe (see Sect. 5.1.2) and XU = Pe/µ3

eff. Both the corner and outer regions
are long and thin with a dominant balance between axial advection and transverse diffusion. In the outer region
we set X = PeX ′, which yields (5.7) to leading order. The overlap between the corner and outer regions is then
described by the well-known self-similar solution of the problem

Y CX ′ = CY Y , C = 0 on Y = 0, C = 1 on X ′ = 0, (5.12)

which may be written

C = γ
( 1

3 , 1
9 X ′−1Y 3

)
/�

( 1
3

)
, (5.13)

where γ is the incomplete gamma function.
In regime IV (1 � Pe � µ2

eff), XC = Pe and XU = µ−1
eff . The outer problem is as defined in regime III. For the

corner we scale X = µ−1
eff Ẋ , Y = µ−1

eff Ẏ which leaves a purely diffusive problem, satisfying to leading order

CẊ Ẋ + CẎ Ẏ = 0, CẎ = C on Ẏ = 0, C = 1 on Ẋ = 0. (5.14)

The far-field limit of (5.14), where C ≈ 0 on Ẏ = 0, is

C ∼ 2[arctan(Ẏ/Ẋ)]/π as |Ẋ |, |Ẏ | → ∞. (5.15)

A numerical solution of (5.14) and (5.15) is seen in Fig. 20, showing how C decays slowly along the wall. However
(5.15) does not correspond to the inner limit of the outer problem (5.13). This transition occurs across a third,
intermediate region between the corner and outer regions where axial advection balances diffusion in X and Y

over lengthscales Pe
−1/2

in both directions. The inner limit of the intermediate region matches (5.15), whilst the
far-field limit matches (5.13). The intermediate region merges with the corner region along the III/IV boundary
where Pe ∼ µ2

eff 
 1, and with the outer region along the IV/V boundary where Pe ∼ 1, µeff 
 1. The decay of
C in the corner region (Fig. 20b) can be compared with Fig. 15(b), which illustrates the different lengthscales over
which C varies along Y = 0 and Y = 1 in regime IV.

In regime V (Pe � 1 � µeff), advection becomes so weak that both the corner and outer regions are purely
diffusive at leading order, with XC = 1 and XU = µ−1

eff . We solve the outer problem in X ≥ 0, 0 ≤ Y ≤ 1 using a
conformal mapping method to give C = 1

π

{
arctan

(
v̂+1

û

)− arctan
(

v̂−1
û

)}
, where û = sinh

(
π
2 X

)
cos

(
π
2 [Y − 1]

)
,

v̂ = cosh
(

π
2 X

)
sin

(
π
2 [Y − 1]

)
. Figure 21(a) shows the contours of constant concentration for this solution, which

can be compared to Fig. 13(d). The corner problem is defined by (5.14) and (5.15). The decay of C in the outer
region (Fig. 21b) can be compared to Fig. 15(a), which illustrates the different lengthscales over which C varies
along Y = 0 and Y = 1.
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Fig. 20 The corner problem in regime IV satisfying (5.14) and (5.15). (a) Equally spaced contour plot of C , (b) Wall concentration
C(Ẋ , 0) versus Ẋ
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On the III/IV boundary, the corner region has O(1) aspect ratio and there is a dominant balance between advec-
tion and diffusion in both the axial and transverse direction, with (5.13) again providing overlap with the outer.
The same dominant balance appears in the outer region at the overlap between regimes IV and V. Finally, on the
boundary between regimes V and I with µeff = O(1), Pe � 1, the corner and outer regions merge.

5.2 Implications for the wavy wall solution

We can now revisit the assumption of Sect. 2.2 that C varies on a lengthscale much longer than λ � 1. This applies
throughout regimes I and II, and in regimes IV and V for µ ∼ µeff � 1/λ (where XU = µ−1

eff defines the shortest
lengthscale over which C varies). In regime III, we require XU = Peµ−3

eff 
 λ for our assumption to be valid.
Thus C varies on a lengthscale much longer than λ where µeff � max

[
(Peλ−1)1/3, λ−1

]
(see Fig. 16). Our

assumption is not uniformly valid in regimes III′′, IV′ and V′. Case 1 (where µ � 1/λ, Sect. 4.1), where increasing
wall waviness increases the uptake, applies everywhere else except regime III′; Case 2 applies uniformly in regime
III′, where increasing the waviness decreases uptake.

6 Extension to a doubly-wavy channel

The problem described in previous sections deals with the flow and uptake of solute over a sinusoidally wavy wall
of wavelength 2πλ and amplitude ελ, where λ � 1 and ε = O(1). In this section we extend the discussion to the
case of a doubly-wavy wall where the O(λ) waviness described previously is corrugated with further sinusoidal
waviness of wavelength 2πλ2 and amplitude ε̂λ2, where λ � 1 and ε̂ = O(1). In the same way that we divided the
previous problem asymptotically into a wall and outer region (Fig. 1), here we divide the domain into three spatial
regions (Fig. 22): region A, of width O(1) which fills the bulk of the channel and where we see the doubly-wavy
wall as flat along Y = 0; region B, of width O(λ), near the wall where we see the doubly-wavy wall as a single
wave along y = ε cos x ; and region �, of width O(λ2) nearest the wall where we only see the O(λ2) waviness.

We formulate the problem separately in each region as before, scaling by a factor λ from region A to region B,
and then again with λ from region B to region �. First, we define an effective uptake parameter for region B, µeffB,
which shows the effect of the O(λ2) waviness on the O(λ) waviness, such that

(n · ∇B) C = −λµeffBC as y → ε cos x, (6.1)

where ∇B is the gradient operator expressed using region-B variables. Second, we use this to find an overall effec-
tive uptake parameter µeffA which shows the effect of both the O(λ) and the O(λ2) waviness to give the effective
boundary condition for region A

(n · ∇) C = −µeffAC as Y → 0. (6.2)

123



42 H. F. Woollard et al.

Fig. 22 Figure showing the
doubly-wavy wall and
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We examine the region-� problem in the neighbourhood of a point x = x0, y = ε cos x0 within region B, where
the local wall shear rate is G0(x0). On the O(λ2) lengthscale of region �, the uptake condition becomes

(n · ∇�) C = −λ2µC, (6.3)

where ∇� is the gradient operator in region-� variables. From Sect. 4, we may write

µeffB =

⎧
⎪⎪⎨

⎪⎪⎩

µL(ε̂)

2π
for µ = o(λ−2),

1

λ2 A
(
ε̂, λ2P̂e, λ2µ

) for µ = O(λ−2),
(6.4)

where L(ε̂) is the arc-length of the wavy wall over one wavelength in region � and P̂e = G0(x0)Pe is the region-�
Péclet number, dependent on the shear at x0. Recall that A

(
ε̂, λ2P̂e, λ2µ

) → 2π/λ2µL(ε̂) as λ2µ → 0 and
A

(
ε̂, λ2P̂e, λ2µ

) → A∞ (
ε̂, λ2P̂e

)
as λ2µ → ∞ (Fig. 10a,b).

We assume that the effect of the slip on region B from region � is negligible, so the flow in region B is governed
by the same equations seen in the previous wall problem (see Sect. 3). The effective boundary condition in region
A can be extracted from (6.4), to give

µeffA =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

µL(ε̂)L(ε)

4π2 for µ = o(λ−1),

1

λA
(
ε, Pe, λµL(ε̂)/2π

) for µ = O(λ−1),

1

λA∞ (ε, Pe)
for µ 
 λ−1.

(6.5)

Note that µeffA is independent of P̂e for all values of µ.
For weak uptake (µ = o(λ−1)) the effective uptake parameter for region A is dependent solely on the total

surface area available. For stronger uptake (µ = O(λ−1)) µeffA is governed by the function A, but with the original
uptake parameter µ replaced by µL(ε̂)/2π ≥ µ. Thus uptake increases with ε for small values of λµL(ε̂)/2π

(Fig. 9), but decreases with ε for larger values of λµL(ε̂)/2π . In particular corrugations at the finest scale have
no effect on the overall uptake when the diffusive lengthscale 1/µ is much smaller than the largest corrugation
wavelength λ.

7 Discussion

Many biological surfaces, such as small intestines and blood vessels, use highly ordered hierarchical structures to
regulate solute permeation. For oral drug delivery and nutrient absorption, it is known that villi and microvilli on
the intestine wall have significant effects on solute permeation and absorption. Many studies have been focused on
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in vitro and in vivo measurements of solute permeation of small intestines [41–44]. Attempts have been also made
to predict drug absorption [45]. However, only a few studies have addressed the effect of the hierarchical structures
of villi and microvilli on solute absorption [46]. In this paper we have examined the effect of such multi-scale wavy
structures on flow and solute absorption via a model problem, involving 2D Stokes flow in a wavy-walled channel,
where the amplitude and wavelength of the waviness are both small compared to the channel width. The domain
has two primary asymptotic regions: a core region of width O(1) and a region near the wavy wall of width O(λ).
By solving the transport problem in the wall region numerically, validating our results against asymptotic solutions
at small amplitude, we showed how the effective uptake parameter in the core region µeff can be related to the wall
uptake parameter µ, as a function of wall shape and Péclet number. This complements the effective slip condition
that must be applied to the core flow as a result of wall waviness.

Uptake in the wall region exhibits two distinct limits. When µ � λ−1, the uptake is sufficiently weak for the
concentration not to vary significantly across the wall region. In this case the strength of the flux across the wall is
determined by two factors: the local concentration in the core region, and the surface area of the wall. While the
net flux is independent of Péclet number, fluxline plots (Fig. 6) show that advection affects the detailed pattern of
uptake within each wave of the wall. In particular, we identified a saddle point and closed streamlines in the fluxline
distribution, indicating individual particles may experience long transit times (on average) before they reach the
wall.

When µ = O(λ−1), the uptake is strong enough for the concentration in the wall region to fall significantly
below that in the core. The net uptake is now dependent on the local flow conditions and wall geometry. Uptake
again increases with surface area (arising from increasing the amplitude parameter ε) provided λµ is sufficiently
small. However, for larger λµ, uptake diminishes with increasing ε. This is because strong uptake causes the solute
to be strongly absorbed at the peaks of the wall, with little solute entering the troughs. Increasing ε narrows the
peaks and reduces their exposure to solute. Fluxlines again demonstrate how the flow may trap particles over long
periods (Fig. 12).

Having obtained a local understanding of the effect of near-wall flow on uptake, we then determined the solute
distribution in the channel as a whole, when solute is realeased from a distributed source of fixed concentration at
the upstream end of the channel. Guided by numerical simulations, we identified five primary parameter regimes
where different behaviour occurs (Fig. 16). When uptake is very weak, the concentration distribution extends
over long regions down the channel, with diffusion suppressing transverse gradients. As the longest lengthscale
over which C varies is independent of µeff in regimes III, IV and V, we see that waviness shortens the distance over
which the solute is absorbed along the channel only in regimes I and II. For stronger uptake, solute concentration
falls rapidly along the wall near the source; strong advection can nevertheless sweep solute significant distances
down the channel, leading to strong transverse concentration gradients. We used this analysis to identify parameter
regimes in which it is appropriate to make the assumption that the concentration varies over a lengthscale much
longer than λ, ensuring that the approximation for µeff is uniformly valid.

We also considered multiple scales of waviness by examining the problem of a doubly-wavy channel, with waves
of wavelength λ in a channel of width O(1) having corrugations of wavelength O(λ2). We found that for µ � λ−1

the effective uptake is proportional to the total surface area, while for µ = O(λ−1) the effective uptake is determined
by the flow near the larger wave but is still influenced by the enhanced surface area of the smaller wave. For larger
µ the effective uptake is independent of the smaller scale of waviness.

In the small intestine the Péclet number is large [46] and the uptake parameter µ can be O(1) [40]. Stoll et al.
[46] report µ∗ = 0.1 cm−1 for insulin, for example, giving µ = 0.2 assuming a∗ = 2 cm. However, µ is likely
to vary dependent on the solute used. Hence transport in the small intestine is likely to span regions II and III of
parameter space (see Fig. 16). This implies that both villi and microvilli in the small intestine increase the uptake
proportionally to their surface area. We hope to investigate the application of this work to the small intestine in
more detail in a further paper.

These results have a number of significant limitations and some obvious extensions. We did not consider very
large values of ε, which in the case of weak uptake µ = O(λ−1) might increase uptake sufficiently to violate
the assumption of small concentration variations across the wall region. We did not explore conditions in which

123



44 H. F. Woollard et al.

uptake is sufficiently strong that the concentration falls appreciably across a single wave (the shaded area in
Fig. 16). We assumed a rigid wall, although one can anticipate significant fluid-structure interaction in many bio-
logical applications [47] which would have a leading-order effect on uptake. Finally, this study is restricted to two
spatial dimensions, and extensions to the three-dimensional geometries that arise in applications such as the small
intestine are likely to reveal significantly different flow structures and uptake patterns.
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Appendix A: Small-amplitude asymptotic solution for Case 1

We consider the solution of (4.1) when the wall has small amplitude. For ε � 1 we expand c̄ = c̄0 + εc̄1 + ε2c̄2 +
O(ε3), C01

µC00
= r0 + εr1 + ε2r2 + O(ε3) and expand the outward pointing normal as

n =
(

−ε sin x,−1 + 1

2
ε2 sin2 x

)
+ O(ε3). (A.1)

We Taylor-expand the boundary condition on the wall around y = 0 and use the asymptotic solution for u given in
Sect. 3. At O(1) the wall is effectively flat and u is a uniform shear slow yielding c̄0 = y, and r0 = 1.

At O(ε), (4.1) and (3.1) give

Pe yc̄1x − c̄1xx − c̄1yy = Pe ye−y sin x, (A.2a)

c̄1y = 0 on y = 0, c̄1 → r1 y as y → ∞, (A.2b)

c̄1 (x, y) = c̄1 (x + 2π, y). (A.2c)

We solve this numerically, first truncating the domain at y = y0 
 1 in the far field and subtracting off the far-field
concentration using c1 = c̄1 − r1 y0. We then set c1(x, y) = a(y) cos x + b(y) sin x to convert (A.2) to a set of
coupled ODEs in a and b:

Pe yb + a − ayy = 0, (A.3a)

−Pe ya + b − byy = Pe ye−y, (A.3b)

with ay, by = 0 on y = 0 and a, b = 0 on y = y0. We solve (A.3) numerically using a simple finite-difference
scheme in y.

Likewise at O(ε2),

Pe yc̄2x − c̄2xx − c̄2yy = −1

2
Pe e−y

√
3
[
cos y(

√
3 − 4) sin y

]
sin 2x + Pe e−y [

y sin xc̄1y − (y − 1) cos xc̄1x
]
,

(A.4)

with c̄2y = − sin xc̄1x − cos xc̄1yy + 1
2 sin2 x on y = 0, c̄2 = r2 y as y → ∞ and c̄2 (x, y) = c̄2 (x + 2π, y).

Again we solve this numerically on the truncated domain using c2 = c̄2 − r2 y0. We then expand c2 as c2(x, y) =
d(y) cos 2x + e(y) sin 2x + f (y), which leaves (A.4) as
1

2
Pe ye + 1

4
d − dyy = −1

2
Pe e−y [

(y − 1)b + yby
]
, (A.5a)

− 1

2
Pe yd + 1

4
e − eyy = −1

2
Pe µe−y

√
3
[
cos y(

√
3 − 4) sin y

]
+ 1

2
Pe e−y [

(y − 1)a + yay
]
, (A.5b)

fyy = 1

2
Pe e−y [

(y − 1)b − yby
]
, (A.5c)

with dy = − 1
2 a − 1

2 ayy − 1
4 , ey = − 1

2 b − 1
2 byy , fy = 1

2 a − 1
2 ayy + 1

4 , on y = 0 and d, e, f = 0, on y = y0.
Again we solve this numerically using a simple finite-difference scheme. To compare the asymptotic solution to
later numerical solutions, we truncate the domain and set c0 = c̄0 − r0 y0 = y − y0.
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Appendix B: Small-amplitude asymptotic solution for Case 2

Here we consider solutions of (4.4) for ε � 1. We again expand c = c0 + εc1 + ε2c2 + O(ε3) and set C10
C01

=
s0 + εs1 + ε2s2 + O(ε3). Using the asymptotic solution of u from (3.1) and assuming no x-dependence of c0, (4.4)
reduces at leading order to c0yy = 0, with c0y − µ̄c0 = 0 on y = 0 and c0 → y + s0 as y → ∞, which we solve
to give

c0 = y + 1/µ̄, (B.1)

and s0 = 1/µ̄. The O(ε) problem for c1 is

Pe yc1x − c1xx − c1yy = Pe ye−y sin x, (B.2a)

c1y − µ̄c1 = µ̄ cos x on y = 0, c1 = y + s1 − 1 as y → ∞, (B.2b)

c1 (x, y) = c1 (x + 2π, y). (B.2c)

We simplify this using the Fourier series c1(x, y) = h(y) cos x + j (y) sin x , to give

Pe y j + h − hyy = 0, −Pe yh + j − jyy = Pe ye−y, (B.3)

with hy − µ̄h = µ̄, jy − µ̄ j = 0 on y = 0, hy , jy = 0 as y → ∞, which we solve numerically. Here the far-field
boundary condition has been simplified to c1y → 1.

The O(ε2) equation is

Pe yc2x − c2xx − c2yy = −1

2
Pe e−y

√
3
[
cos y(

√
3 − 4) sin y

]
sin 2x + Pe e−y [

y sin xc1y − (y − 1) cos xc1x
]
,

(B.4)

with c2y − µ̄c2 = − 1
4 cos 2x + 1

4 − sin xc1x + µ̄ cos xc1y − cos xc1yy on y = 0, c2 → y + s2 as y → ∞ and
c2 (x, y) = c2 (x + 2π, y). We again simplify the far-field boundary condition to c2y → 1 and use a Fourier series,
where c2(x, y) = k(y) cos 2x + m(y) sin 2x + n(y), to give

1

2
Pe ym + 1

4
k − kyy = −1

2
Pe e−y [

(y − 1) j + y jy
]
, (B.5a)

− 1

2
Pe yk + 1

4
m − myy = −1

2
Pe e−y

√
3
[
cos y(

√
3 − 4) sin y

]
+ 1

2
Pe e−y [

(y − 1)h + yhy
]
, (B.5b)

nyy = 1

2
Pe e−y [

(y − 1) j − y jy
]
, (B.5c)

ky − µ̄k = −1

2
h + 1

2
µ̄hy − 1

2
hyy − 1

4
, on y = 0, (B.5d)

my − µ̄m = −1

2
j + 1

2
µ̄ jy − 1

2
jyy, on y = 0, (B.5e)

ny − µ̄n = 1

2
h + 1

2
µ̄hy − 1

2
hyy + 1

4
, on y = 0, (B.5f)

ky, my, ny = 0, as y → ∞. (B.5g)

We solve (B.5) using a finite-difference scheme.
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Appendix C: WKB method for the outer problem where µeff = O(1), Pe � 1

To solve (5.11) for large ν we apply a WKB expansion, by setting F = eS0+S1+··· with |S0| 
 |S1|. Hence

S2
0Y + νY

(
1 − 1

2
Y

)
= 0, (C.1a)

S0Y Y + 2S0Y S1Y = 0. (C.1b)

Rearranging (C.1a) gives S0Y = ±iν
1
2
√

w, where w = Y (1 − Y/2); we define V = ∫ Y
0

√
w dY to give

S0 = ±iν
1
2 V + B0, (C.2)

for some constant B0. We rearrange (C.1b) to give

S1 = log
(
ν− 1

4 w− 1
4

)
+ B1, (C.3)

for some constant B1. Thus we may write

F = A (νw)−
1
4 exp

[
iν

1
2 V

]
+ Ā (νw)−

1
4 exp

[
−iν

1
2 V

]
, (C.4)

where A ∈ C and Ā is its complex conjugate. We apply FY = 0 at Y = 1 to give Ā = exp
[
2iν

1
2 V (1)

]
A, so

F = Â (νw)−
1
4 cos

[
ν

1
2 (V (Y ) − V (1))

]
, (C.5)

for some Â ∈ R. This applies when S0 
 S1, i.e., for ν− 1
3 (log ν)

2
3 ≤ Y ≤ 1, so we need another formulation for

the boundary layer near the wall.

For Y � 1, w ∼ Y and V ∼ 2
3 Y

3
2 , which gives

FY Y + νY F = 0, FY = µeff F on Y = 0, (C.6)

which we need to match to the inner limit of (C.5),

F = Â (νY )−
1
4 cos

[
ν

1
2

(
2

3
Y

3
2 − V (1)

)]
. (C.7)

We put ξ = −ν
1
3 Y into (C.6), to give

Fξξ − ξ F = 0, (C.8a)

Fξ = −µ̂eff F on ξ = 0, (C.8b)

F → Â
(
−ν

2
3 ξ

)− 1
4

cos

[
ν

1
2

(
2

3
ν− 1

2 iξ
3
2 − V (1)

)]
as ξ → −∞, (C.8c)

where µ̂eff = ν− 1
3 µeff. Equation (C.8a) has the solution F = D0Ai(ξ) + D1Bi(ξ). To find values of the constants

D0 and D1 we apply (C.8b) to give D1 = −D0 Q, where

Q =
[
−3

1
3 �

( 2
3

) + µ̂eff�
( 1

3

)]

3
5
6 �

( 2
3

) + µ̂ eff3
1
2 �

( 1
3

) . (C.9)

To apply the matching condition (C.8c), we use the asymptotic expansions

Ai(ξ) ∼ π− 1
2 (−ξ)−

1
4 sin

(
2

3
(−ξ)

3
2 + 1

4
π

)
, (C.10a)

Bi(ξ) ∼ π− 1
2 (−ξ)−

1
4 cos

(
2

3
(−ξ)

3
2 + 1

4
π

)
, (C.10b)
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for ξ → −∞ [48, pp. 448], which gives

F →
√

2D0

4
π− 1

2 (−ξ)−
1
4

[
sin

(
2

3
iξ

3
2

)
(1 + Q) + cos

(
2

3
iξ

3
2

)
(1 − Q)

]
as ξ → −∞. (C.11)

This we compare with (C.8c), to give

Âν− 1
6 sin

(
ν

1
2 V (1)

)
=

√
2

4
D0π

− 1
2 (1 + Q), (C.12)

Âν− 1
6 cos

(
ν

1
2 V (1)

)
=

√
2

4
D0π

− 1
2 (1 − Q), (C.13)

which we combine to give

tan
(
ν

1
2 V (1)

)
= (1 + Q)/(1 − Q), (C.14)

which is converted to a relationship between µeff and ν of

µ̂eff = 3
1
3 δ

(
1 − α tan

(
ν

1
2 V (1)

))

(
−α + tan

(
ν

1
2 V (1)

)) , (C.15)

where δ ≡ �
( 2

3

)
/�

( 1
3

)
and α ≡ (

√
3 + 1)/(

√
3 − 1). This result gives multiple eigenvalues for each µeff in close

agreement with numerics even for moderate values of ν (see Fig. 18). As µeff → ∞, ν1 approaches a finite-value
ν∞ which we find from (C.15) as

ν∞ =
(

tan−1 α/V (1)
)2 ≈ 5.555.. (C.16)
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